Publications

Preprints

  1. Quantifying uncertainty in the numerical integration of evolution equations based on Bayesian isotonic regression
    Y. Miyatake, K. Irie, T. Matsuda
    arXiv

  2. On the B-series composition theorem
    J.C. Butcher, T. Mitsui, Y. Miyatake, S. Sato
    arXiv

  3. Structure-preserving numerical methods for constrained gradient flows of planar closed curves with explicit tangential velocities
    T. Kemmochi, Y. Miyatake, K. Sakakibara
    arXiv

  4. Genaralized nearly isotonic regression
    T. Matsuda, Y. Miyatake
    arXiv

Refereed Journal Papers and Conference Proceedings

  1. Adaptive projected SOR algorithms for nonnegative quadratic programming
    Y. Miyatake, T. Sogabe
    to appear in Japan J. Indust. Appl. Math.
    DOI arXiv

  2. Structure-preserving physics-informed neural networks with energy or Lyapunov structure
    H. Chu, Y. Miyatake, W. Cui, S. Wei, D. Furihata
    International Joint Conference on Airitifial Inteligence (IJCAI), 2024
    arXiv

  3. A new family of fourth-order energy-preserving integrators
    Y. Miyatake
    Numer. Algorithms 96 (2024) 1269–1293: Part of a collection: ANODE 2023 – In honour of John Butcher’s 90th birthday
    DOI arXiv Preface

  4. Error distribution estimation for fixed-point arithmetic using program derivatives
    S. Akiyama, R. Shioya, Y. Miyatake, T. Yang
    The 25th International Symposium on Quality Electronic Design (ISQED), 2024.
    PDF

  5. Lyapunov-stable deep equilibrium models
    H. Chu, S. Wei, T. Liu, Y. Zhao, Y. Miyatake
    The 38th Annual AAAI Conference on Artificial Intelligence, 2024.
    arXiv

  6. A modified model for topic detection from a corpus and a new metric evaluating the understandability of topics
    T. Kitano, Y. Miyatake, D. Furihata
    JSIAM Lett. 15 (2023) 121–124
    DOI arXiv

  7. Modelling the discretization error of initial value problems using the Wishart distribution
    N. Marumo, T. Matsuda, Y. Miyatake
    Appl. Math. Lett. 147 (2023) 108833.
    DOI arXiv

  8. High-order linearly implicit schemes conserving quadratic invariants
    S. Sato, Y. Miyatake, J. C. Butcher
    Appl. Numer. Math. 187 (2023) 71–88.
    DOI arXiv

  9. The symplectic adjoint method: memory-efficient backpropagation of neural-network-based differential equations
    T. Matsubara, Y. Miyatake, T. Yaguchi
    IEEE Transactions on Neural Networks and Learning Systems, 2023
    DOI

  10. Composing a surrogate observation operator for sequential data assimilation
    K. Akita, Y. Miyatake, D. Furihata
    JSIAM Lett. 14 (2022) 123–126.
    CiteDOI arXiv

  11. Symplectic adjoint method for exact gradient of neural ODE with minimal memory
    T. Matsubara, Y. Miyatake, T. Yaguchi
    Advances in Neural Information Processing Systems 35 (NeurIPS2021), 2021. (acceptance rate 26%)
    arXiv

  12. Computing the matrix fractional power based on the double exponential formula
    F. Tatsuoka, T. Sogabe, Y. Miyatake, T. Kemmochi, S.-L. Zhang
    Electron. Trans. Numer. Anal. 54 (2021) 558–580.
    Cite DOI arXiv

  13. Adjoint-based exact Hessian computation
    S. Ito, T. Matsuda, Y. Miyatake
    BIT Numer. Math. 61 (2021) 503–522.
    Cite DOI arXiv

  14. Estimation of ordinary differential equation models with discretization error quantification
    T. Matsuda, Y. Miyatake
    SIAM/ASA J. Uncertain. Quantif. 9 (2021) 302–331.
    Cite DOI arXiv

  15. A parallelizable energy-preserving integrator MB4 and its application to quantum-mechanical wavepacket dynamics
    T. Sakai, S. Kudo, H. Imachi, Y. Miyatake, T. Hoshi, Y. Yamamoto
    Japan J. Indust. Appl. Math. 38 (2021) 105–123.
    Cite DOI arXiv

  16. Generalization of partitioned Runge–Kutta methods for adjoint systems
    T. Matsuda, Y. Miyatake
    J. Comput. Appl. Math. 388 (2021) 113308.
    Cite DOI arXiv

  17. A fully discrete curve-shortening polygonal evolution law for moving boundary problems
    K. Sakakibara, Y. Miyatake
    J. Comput. Phys. 424 (2021) 109857.
    Cite DOI arXiv

  18. Adaptive SOR methods based on the Wolfe conditions
    Y. Miyatake, T. Sogabe, S.-L. Zhang
    Numer. Algorithms 84 (2020) 117–132.
    Cite DOI arXiv

  19. Algorithms for the computation of the matrix logarithm based on the double exponential formula
    F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang
    J. Comput. Appl. Math. 373 (2020) 112396.
    Cite DOI arXiv

  20. Modified Strang splitting for semilinear parabolic problems
    K. Nakano, T. Kemmochi, Y. Miyatake, T. Sogabe, S.-L. Zhang
    JSIAM Lett. 11 (2019) 77–80.
    Cite DOI arXiv

  21. A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation
    Y. Miyatake, T. Nakagawa, T. Sogabe, S.-L. Zhang
    J. Comput. Dyn. 6 (2019) 361–383.
    Cite DOI arXiv

  22. Structure-preserving model reduction for dynamical systems with a first integral
    Y. Miyatake
    Jpn. J. Indust. Appl. Math. 36 (2019) 1021–1037.
    Cite DOI arXiv

  23. Relation between the T-congruence Sylvester equation and the generalized Sylvester equation
    Y. Satake, M. Oozawa, T. Sogabe, Y. Miyatake, T. Kemmochi, S.-L. Zhang
    Appl. Math. Lett. 96 (2019) 7–13.
    Cite DOI arXiv

  24. On computing the $k$-th singular triplet (in Japanese)
    D. Lee, T. Sogabe, Y. Miyatake, S.-L. Zhang
    Trans. Jpn. Soc. Ind. Appl. Math. 29 (2019) 121–140.
    指定番目の特異値と特異ベクトルの計算について
    李 東珍,曽我部 知広,宮武 勇登,張 紹良
    日本応用数理学会論文誌 29 (2019) 121–140.
    DOI

  25. A note on computing the matrix fractional power using the double exponential formula (in Japanese)
    F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang
    Trans. Jpn. Soc. Ind. Appl. Math. 28 (2018) 142–161.
    二重指数型数値積分公式を用いた行列実数乗の計算
    立岡 文理,曽我部 知広,宮武 勇登,張 紹良
    日本応用数理学会論文誌 28 (2018) 142–161.
    DOI

  26. 無段式Runge-Kutta法の構造保存数値解法としての側面
    宮武 勇登
    応用数理, 28 (2018), 15–22.
    Cite DOI

  27. Solution of the $k$-th eigenvalue problem in large-scale electronic structure calculations
    D. Lee, T. Hoshi, T. Sogabe, Y. Miyatake, S.-L. Zhang
    J. Comput. Phys. 371 (2018), 618–632.
    Cite DOI arXiv

  28. On the equivalence between SOR-type methods for linear systems and discrete gradient methods for gradient systems
    Y. Miyatake, T. Sogabe, S.-L. Zhang
    J. Comput. Appl. Math. 342 (2018) 58–69.
    Cite DOI arXiv

  29. On a relationship between the T-congruence Sylvester equation and the Lyapunov equation
    M. Oozawa, T. Sogabe, Y. Miyatake, S.-L. Zhang
    J. Comput. Appl. Math. 329 (2018) 51–56.
    Cite DOI arXiv

  30. The discrete gradient method for differential equations can be a generator of linear solvers (in Japanese)
    Y. Miyatake, T. Sogabe, S.-L. Zhang
    Trans. Jpn. Soc. Ind. Appl. Math. 27 (2017) 239–249.
    微分方程式に対する離散勾配法に基づく線形方程式の数値解法の生成
    宮武 勇登,曽我部 知広,張 紹良
    日本応用数理学会論文誌 27 (2017) 239–249.
    DOI

  31. Geometric numerical integrators for Hunter–Saxton like equations
    Y. Miyatake, D. Cohen, D. Furihata, T. Matsuo
    Jpn. J. Indust. Appl. Math. 34 (2017) 441–472.
    Cite DOI arXiv

  32. Energy-preserving $H^1$-Galerkin schemes for the Hunter–-Saxton equation
    Y. Miyatake, G. Eom, T. Sogabe, S.-L. Zhang
    J. Math. Res. Appl. 37 (2017) 107–118.
    Cite DOI arXiv

  33. A cost-efficient variant of the incremental Newton iteration for the matrix $p$th root
    F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang
    J. Math. Res. Appl. 37 (2017) 97–106.
    Cite DOI arXiv

  34. A characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems
    Y. Miyatake, J.C. Butcher
    SIAM J. Numer. Anal. 54 (2016) 1993–2013.
    Cite DOI arXiv

  35. A local discontinuous Galerkin method based on variational structure
    Y. Aimoto, T. Matsuo, Y. Miyatake
    Discrete Contin. Dyn. Syst. Ser. S 8 (2015) 817–832.
    Cite DOI METR

  36. A derivation of energy-preserving exponentially-fitted integrators for Poisson systems
    Y. Miyatake
    Comput. Phys. Commun. 187 (2015) 156–161.
    Cite DOI METR

  37. A fourth-order energy-preserving exponentially-fitted integrator for Poisson systems
    Y. Miyatake
    Proceedings of ICNAAM 2014 in AIP Conference Proceedings, 1648 (2015) 180004.
    Cite DOI

  38. A note on the adaptive conservative/dissipative discretization for evolutionary partial differential equations
    Y. Miyatake, T. Matsuo
    J. Comput. Appl. Math. 274 (2015) 79–87.
    Cite DOI METR

  39. A general framework for finding energy dissipative/conservative $H^1$-Galerkin schemes and their underlying $H^1$-weak forms for nonlinear evolution equations
    Y. Miyatake, T. Matsuo
    BIT Numer. Math. 54 (2014) 1119–1154.
    Cite DOI METR

  40. An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems
    Y. Miyatake
    BIT Numer. Math. 54 (2014) 777–799.
    Cite DOI METR

  41. Structure-preserving numerical methods for differential equations (in Japanese)
    T. Matsuo, Y. Miyatake
    Trans. Jpn. Soc. Ind. Appl. Math. 22 (2012) 213–251.
    微分方程式に対する構造保存数値解法
    松尾 宇泰,宮武 勇登
    日本応用数理学会論文誌 22 (2012) 213–251.
    DOI

  42. Energy conservative/dissipative $H^1$-Galerkin semi-discretizations for partial differential equations
    Y. Miyatake, T. Matsuo
    Proceedings of ICNAAM 2012 in AIP Conference Proceedings 1479 (2012) 1268.
    Cite DOI

  43. Energy-preserving $H^1$-Galerkin schemes for shallow water wave equations with peakon solutions
    Y. Miyatake, T. Matsuo
    Phys. Lett. A 376 (2012) 2633–2639.
    Cite DOI

  44. Conservative finite difference schemes for the Degasperis–Procesi equation
    Y. Miyatake, T. Matsuo
    J. Comput. Appl. Math. 236 (2012) 3728–3740.
    Cite DOI METR

  45. Numerical integration of the Ostrovsky equation based on its geometric structures
    Y. Miyatake, T. Yaguchi, T. Matsuo
    J. Comput. Phys. 231 (2012) 4542–4559.
    Cite DOI METR

  46. Invariants preserving integration of the modified Camassa–Holm equation
    Y. Miyatake, T. Matsuo, D. Furihara
    Jpn. J. Indust. Appl. Math. 28 (2011) 351–381.
    Cite DOI METR

  47. A multi-symplectic integration of the Ostrovsky equation
    Y. Miyatake, T. Yaguchi, T. Matsuo
    JSIAM Letters 3 (2011) 41–44.
    Cite DOI

  48. Conservative finite difference schemes for the modified Camassa–Holm equation
    Y. Miyatake, T. Matsuo, D. Furihata
    JSIAM Letters 3 (2011) 37–40.
    Cite DOI

  49. Conservative finite difference schemes for the Degasperis–Procesi equation (in Japanese)
    Y. Miyatake, T. Matsuo
    Trans. Jpn. Soc. Ind. Appl. Math. 20 (2010) 219–239.
    Degasperis–Procesi方程式に対する保存則を保つ差分スキーム
    宮武 勇登,松尾 宇泰
    日本応用数理学会論文誌 20 (2010) 219–239.
    DOI

Non-Refereed Articles

  1. 数値解析と確率・統計による不確実性定量化
    松田 孟留,宮武 勇登
    数理解析研究所講究録 2167 (2020).
    PDF

  2. 長時間積分用のエネルギー保存解法
    宮武 勇登
    数理解析研究所講究録 1995 (2016) 48–56.
    PDF

  3. Structure-preserving integrators for the Benjamin-type equations
    K. Kinugasa, Y. Miyatake, T. Matsuo
    2015.
    arXiv