Quantifying uncertainty in the numerical integration of evolution equations based on Bayesian isotonic regression
Y. Miyatake, K. Irie, T. Matsuda
arXiv
On the B-series composition theorem
J.C. Butcher, T. Mitsui, Y. Miyatake, S. Sato
arXiv
Structure-preserving numerical methods for constrained gradient flows of planar closed curves with explicit tangential velocities
T. Kemmochi, Y. Miyatake, K. Sakakibara
arXiv
Genaralized nearly isotonic regression
T. Matsuda, Y. Miyatake
arXiv
Adaptive projected SOR algorithms for nonnegative quadratic programming
Y. Miyatake, T. Sogabe
to appear in Japan J. Indust. Appl. Math.
DOI arXiv
Structure-preserving physics-informed neural networks with energy or Lyapunov structure
H. Chu, Y. Miyatake, W. Cui, S. Wei, D. Furihata
International Joint Conference on Airitifial Inteligence (IJCAI), 2024
arXiv
A new family of fourth-order energy-preserving integrators
Y. Miyatake
Numer. Algorithms 96 (2024) 1269–1293: Part of a collection: ANODE 2023 – In honour of John Butcher’s 90th birthday
DOI arXiv Preface
Error distribution estimation for fixed-point arithmetic using program derivatives
S. Akiyama, R. Shioya, Y. Miyatake, T. Yang
The 25th International Symposium on Quality Electronic Design (ISQED), 2024.
PDF
Lyapunov-stable deep equilibrium models
H. Chu, S. Wei, T. Liu, Y. Zhao, Y. Miyatake
The 38th Annual AAAI Conference on Artificial Intelligence, 2024.
arXiv
A modified model for topic detection from a corpus and a new metric evaluating the understandability of topics
T. Kitano, Y. Miyatake, D. Furihata
JSIAM Lett. 15 (2023) 121–124
DOI arXiv
Modelling the discretization error of initial value problems using the Wishart distribution
N. Marumo, T. Matsuda, Y. Miyatake
Appl. Math. Lett. 147 (2023) 108833.
DOI arXiv
High-order linearly implicit schemes conserving quadratic invariants
S. Sato, Y. Miyatake, J. C. Butcher
Appl. Numer. Math. 187 (2023) 71–88.
DOI arXiv
The symplectic adjoint method: memory-efficient backpropagation of neural-network-based differential equations
T. Matsubara, Y. Miyatake, T. Yaguchi
IEEE Transactions on Neural Networks and Learning Systems, 2023
DOI
Composing a surrogate observation operator for sequential data assimilation
K. Akita, Y. Miyatake, D. Furihata
JSIAM Lett. 14 (2022) 123–126.
CiteDOI arXiv
Symplectic adjoint method for exact gradient of neural ODE with minimal memory
T. Matsubara, Y. Miyatake, T. Yaguchi
Advances in Neural Information Processing Systems 35 (NeurIPS2021), 2021. (acceptance rate 26%)
arXiv
Computing the matrix fractional power based on the double exponential formula
F. Tatsuoka, T. Sogabe, Y. Miyatake, T. Kemmochi, S.-L. Zhang
Electron. Trans. Numer. Anal. 54 (2021) 558–580.
Cite
DOI
arXiv
Adjoint-based exact Hessian computation
S. Ito, T. Matsuda, Y. Miyatake
BIT Numer. Math. 61 (2021) 503–522.
Cite
DOI
arXiv
Estimation of ordinary differential equation models with discretization error quantification
T. Matsuda, Y. Miyatake
SIAM/ASA J. Uncertain. Quantif. 9 (2021) 302–331.
Cite
DOI
arXiv
A parallelizable energy-preserving integrator MB4 and its application to quantum-mechanical wavepacket dynamics
T. Sakai, S. Kudo, H. Imachi, Y. Miyatake, T. Hoshi, Y. Yamamoto
Japan J. Indust. Appl. Math. 38 (2021) 105–123.
Cite
DOI
arXiv
Generalization of partitioned Runge–Kutta methods for adjoint systems
T. Matsuda, Y. Miyatake
J. Comput. Appl. Math. 388 (2021) 113308.
Cite
DOI
arXiv
A fully discrete curve-shortening polygonal evolution law for moving boundary problems
K. Sakakibara, Y. Miyatake
J. Comput. Phys. 424 (2021) 109857.
Cite
DOI
arXiv
Adaptive SOR methods based on the Wolfe conditions
Y. Miyatake, T. Sogabe, S.-L. Zhang
Numer. Algorithms 84 (2020) 117–132.
Cite
DOI
arXiv
Algorithms for the computation of the matrix logarithm based on the double exponential formula
F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang
J. Comput. Appl. Math. 373 (2020) 112396.
Cite
DOI
arXiv
Modified Strang splitting for semilinear parabolic problems
K. Nakano, T. Kemmochi, Y. Miyatake, T. Sogabe, S.-L. Zhang
JSIAM Lett. 11 (2019) 77–80.
Cite
DOI
arXiv
A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation
Y. Miyatake, T. Nakagawa, T. Sogabe, S.-L. Zhang
J. Comput. Dyn. 6 (2019) 361–383.
Cite
DOI
arXiv
Structure-preserving model reduction for dynamical systems with a first integral
Y. Miyatake
Jpn. J. Indust. Appl. Math. 36 (2019) 1021–1037.
Cite
DOI
arXiv
Relation between the T-congruence Sylvester equation and the generalized Sylvester equation
Y. Satake, M. Oozawa, T. Sogabe, Y. Miyatake, T. Kemmochi, S.-L. Zhang
Appl. Math. Lett. 96 (2019) 7–13.
Cite
DOI
arXiv
On computing the $k$-th singular triplet (in Japanese)
D. Lee, T. Sogabe, Y. Miyatake, S.-L. Zhang
Trans. Jpn. Soc. Ind. Appl. Math. 29 (2019) 121–140.
指定番目の特異値と特異ベクトルの計算について
李 東珍,曽我部 知広,宮武 勇登,張 紹良
日本応用数理学会論文誌 29 (2019) 121–140.
DOI
A note on computing the matrix fractional power using the double exponential formula (in Japanese)
F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang
Trans. Jpn. Soc. Ind. Appl. Math. 28 (2018) 142–161.
二重指数型数値積分公式を用いた行列実数乗の計算
立岡 文理,曽我部 知広,宮武 勇登,張 紹良
日本応用数理学会論文誌 28 (2018) 142–161.
DOI
無段式Runge-Kutta法の構造保存数値解法としての側面
宮武 勇登
応用数理, 28 (2018), 15–22.
Cite
DOI
Solution of the $k$-th eigenvalue problem in large-scale electronic structure calculations
D. Lee, T. Hoshi, T. Sogabe, Y. Miyatake, S.-L. Zhang
J. Comput. Phys. 371 (2018), 618–632.
Cite
DOI
arXiv
On the equivalence between SOR-type methods for linear systems and discrete gradient methods for gradient systems
Y. Miyatake, T. Sogabe, S.-L. Zhang
J. Comput. Appl. Math. 342 (2018) 58–69.
Cite
DOI
arXiv
On a relationship between the T-congruence Sylvester equation and the Lyapunov equation
M. Oozawa, T. Sogabe, Y. Miyatake, S.-L. Zhang
J. Comput. Appl. Math. 329 (2018) 51–56.
Cite
DOI
arXiv
The discrete gradient method for differential equations can be a generator of linear solvers (in Japanese)
Y. Miyatake, T. Sogabe, S.-L. Zhang
Trans. Jpn. Soc. Ind. Appl. Math. 27 (2017) 239–249.
微分方程式に対する離散勾配法に基づく線形方程式の数値解法の生成
宮武 勇登,曽我部 知広,張 紹良
日本応用数理学会論文誌 27 (2017) 239–249.
DOI
Geometric numerical integrators for Hunter–Saxton like equations
Y. Miyatake, D. Cohen, D. Furihata, T. Matsuo
Jpn. J. Indust. Appl. Math. 34 (2017) 441–472.
Cite
DOI
arXiv
Energy-preserving $H^1$-Galerkin schemes for the Hunter–-Saxton equation
Y. Miyatake, G. Eom, T. Sogabe, S.-L. Zhang
J. Math. Res. Appl. 37 (2017) 107–118.
Cite
DOI
arXiv
A cost-efficient variant of the incremental Newton iteration for the matrix $p$th root
F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang
J. Math. Res. Appl. 37 (2017) 97–106.
Cite
DOI
arXiv
A characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems
Y. Miyatake, J.C. Butcher
SIAM J. Numer. Anal. 54 (2016) 1993–2013.
Cite
DOI
arXiv
A local discontinuous Galerkin method based on variational structure
Y. Aimoto, T. Matsuo, Y. Miyatake
Discrete Contin. Dyn. Syst. Ser. S 8 (2015) 817–832.
Cite
DOI
METR
A derivation of energy-preserving exponentially-fitted integrators for Poisson systems
Y. Miyatake
Comput. Phys. Commun. 187 (2015) 156–161.
Cite
DOI
METR
A fourth-order energy-preserving exponentially-fitted integrator for Poisson systems
Y. Miyatake
Proceedings of ICNAAM 2014 in AIP Conference Proceedings, 1648 (2015) 180004.
Cite
DOI
A note on the adaptive conservative/dissipative discretization for evolutionary partial differential equations
Y. Miyatake, T. Matsuo
J. Comput. Appl. Math. 274 (2015) 79–87.
Cite
DOI
METR
A general framework for finding energy dissipative/conservative $H^1$-Galerkin schemes and their underlying $H^1$-weak forms for nonlinear evolution equations
Y. Miyatake, T. Matsuo
BIT Numer. Math. 54 (2014) 1119–1154.
Cite
DOI
METR
An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems
Y. Miyatake
BIT Numer. Math. 54 (2014) 777–799.
Cite
DOI
METR
Structure-preserving numerical methods for differential equations (in Japanese)
T. Matsuo, Y. Miyatake
Trans. Jpn. Soc. Ind. Appl. Math. 22 (2012) 213–251.
微分方程式に対する構造保存数値解法
松尾 宇泰,宮武 勇登
日本応用数理学会論文誌 22 (2012) 213–251.
DOI
Energy conservative/dissipative $H^1$-Galerkin semi-discretizations for partial differential equations
Y. Miyatake, T. Matsuo
Proceedings of ICNAAM 2012 in AIP Conference Proceedings 1479 (2012) 1268.
Cite
DOI
Energy-preserving $H^1$-Galerkin schemes for shallow water wave equations with peakon solutions
Y. Miyatake, T. Matsuo
Phys. Lett. A 376 (2012) 2633–2639.
Cite
DOI
Conservative finite difference schemes for the Degasperis–Procesi equation
Y. Miyatake, T. Matsuo
J. Comput. Appl. Math. 236 (2012) 3728–3740.
Cite
DOI
METR
Numerical integration of the Ostrovsky equation based on its geometric structures
Y. Miyatake, T. Yaguchi, T. Matsuo
J. Comput. Phys. 231 (2012) 4542–4559.
Cite
DOI
METR
Invariants preserving integration of the modified Camassa–Holm equation
Y. Miyatake, T. Matsuo, D. Furihara
Jpn. J. Indust. Appl. Math. 28 (2011) 351–381.
Cite
DOI
METR
A multi-symplectic integration of the Ostrovsky equation
Y. Miyatake, T. Yaguchi, T. Matsuo
JSIAM Letters 3 (2011) 41–44.
Cite
DOI
Conservative finite difference schemes for the modified Camassa–Holm equation
Y. Miyatake, T. Matsuo, D. Furihata
JSIAM Letters 3 (2011) 37–40.
Cite
DOI
Conservative finite difference schemes for the Degasperis–Procesi equation (in Japanese)
Y. Miyatake, T. Matsuo
Trans. Jpn. Soc. Ind. Appl. Math. 20 (2010) 219–239.
Degasperis–Procesi方程式に対する保存則を保つ差分スキーム
宮武 勇登,松尾 宇泰
日本応用数理学会論文誌 20 (2010) 219–239.
DOI